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Abstract

We prove that Gibbs measures for the geodesic flow on negatively curved (possibly non compact)
manifolds have positive entropy (1) (2)

This short note is a complement to [PPS15, PS18, GST20]. We follow notations of [PPS15]. For a
dynamical system, existence of Gibbs measures is a feature of a chaotic behaviour. In [PPS15], for the
geodesic flow of noncompact negatively curved manifolds, a geometric construction of Gibbs measures
in the spirit of Patterson-Sullivan is exposed, and many properties of these measures are proven,
among which their mixing, as soon as they are finite. In [PS18], we characterize their finiteness,
and in [GST20], we provide a sufficient condition for finiteness. However, we did not investigate the
positiveness of entropy. We do it below.

Theorem 1. Let M be a nonelementary negatively curved manifold, and F : T 1M → R be a Hölder
continuous potential whose Gibbs measure mF is finite and normalized into a probability measure. Then
it has positive Kolmogorov-Sinai entropy.

Without loss of generality, we can normalize the potential F so that P (F ) = 0 and h(mF ) =
−
∫
T 1M F dmF . Thus, it is enough to show that

∫
F dmF < 0.

Choose a large compact subset K ⊂ T 1M with positive measure. The Gibbs property [PPS15, ]
says that there exists C > 0 such that for all v ∈ K and T > 0 with gT v ∈ K,

1

C
exp

(∫ T

0
F (gtv) dt

)
≤ mF (B(v, 0, T, ϵ) ≤ C exp

(∫ T

0
F (gtv) dt

)
. (1)

Lemma 2. For all v ∈ K, mF (B(v, 0, T, ε)) → 0 when T → +∞.

Proof. By [PPS15, Lemma 3.17] every dynamical ball B(v, T, ε) is included in a product of shadows

Oπ(gT v)(B(π(v), 2ε))×Oπ(v)(B(π(gT v), 2ε))× [−1, 1] .

The definition of mF as a product measure implies that up to a constant, depending on v but not
on T , the measure mF (B(v, 0, T, ε)) is bounded from above by µF

o (Oπ(v)(B(π(gT v, 2ε)). The sets
(Oπ(v)(B(π(gT v, 2ε))))T>0 decrease to a point when T → +∞, and the measure µF

o has no atoms.
This proves the lemma.

The Gibbs property 1 implies immediately the following corollary.

Corollary 3. For all v ∈ K∫ T

0
F (gtv) dt → −∞ when T → +∞ with gT v ∈ K .
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The end of the proof consists in proving that the conclusion of the above corollary, true for all
K ⊂ T 1M and v ∈ K, implies

∫
F dmF < 0.

Consider the first return map τK : T 1M → R+ ∪ {∞} in K of the time 1-map g1 of the geodesic
flow, let mK

F be the normalization of the restriction of mF to K, and τKN the n−th return time in K.
Induce on the compact subset K ⊂ T 1M . Define T (v) = gτK(v)(v), and G(v) =

∫ τK(v)
0 F (gtv) dt. We

have

SNG(v) =

∫ τN (v)

0
F (gsv)ds and

∫
T 1M

F dmF = mF (K)×
∫
K
G(v) dmK

F .

The above corollary implies that when N → +∞, SNG(v) → −∞. The main Theorem follows
from the lemma below.

Lemma 4 (Atkinson [Atk76]). Let (X,B,m, T ) be an ergodic system, with m finite probability measure.
Let G ∈ L1(X,m). If SNG(v) → −∞ almost surely, then

∫
Gdm < 0.
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