Gibbs measures have positive entropy

Sébastien Gouëzel, Barbara Schapira, Samuel Tapie

Version April 16, 2025

Abstract

We prove that Gibbs measures for the geodesic flow on negatively curved (possibly non compact) manifolds have positive entropy $\binom{1}{2}$

This short note is a complement to [PPS15, PS18, GST20]. We follow notations of [PPS15]. For a dynamical system, existence of Gibbs measures is a feature of a chaotic behaviour. In [PPS15], for the geodesic flow of noncompact negatively curved manifolds, a geometric construction of Gibbs measures in the spirit of Patterson-Sullivan is exposed, and many properties of these measures are proven, among which their mixing, as soon as they are finite. In [PS18], we characterize their finiteness, and in [GST20], we provide a sufficient condition for finiteness. However, we did not investigate the positiveness of entropy. We do it below.

Theorem 1. Let M be a nonelementary negatively curved manifold, and $F : T^1M \to \mathbb{R}$ be a Hölder continuous potential whose Gibbs measure m_F is finite and normalized into a probability measure. Then it has positive Kolmogorov-Sinai entropy.

Without loss of generality, we can normalize the potential F so that P(F) = 0 and $h(m_F) = -\int_{T^1M} F \, dm_F$. Thus, it is enough to show that $\int F \, dm_F < 0$. Choose a large compact subset $K \subset T^1M$ with positive measure. The *Gibbs property* [PPS15,]

Choose a large compact subset $K \subset T^1 M$ with positive measure. The *Gibbs property* [PPS15,] says that there exists C > 0 such that for all $v \in K$ and T > 0 with $g^T v \in K$,

$$\frac{1}{C}\exp\left(\int_0^T F(g^t v)\,dt\right) \leq m_F(B(v,0,T,\epsilon) \leq C\exp\left(\int_0^T F(g^t v)\,dt\right). \tag{1}$$

Lemma 2. For all $v \in K$, $m_F(B(v, 0, T, \varepsilon)) \to 0$ when $T \to +\infty$.

Proof. By [PPS15, Lemma 3.17] every dynamical ball $B(v, T, \varepsilon)$ is included in a product of shadows

$$\mathcal{O}_{\pi(g^Tv)}(B(\pi(v), 2\varepsilon)) \times \mathcal{O}_{\pi(v)}(B(\pi(g^Tv), 2\varepsilon)) \times [-1, 1].$$

The definition of m_F as a product measure implies that up to a constant, depending on v but not on T, the measure $m_F(B(v, 0, T, \varepsilon))$ is bounded from above by $\mu_o^F(\mathcal{O}_{\pi(v)}(B(\pi(g^Tv, 2\varepsilon))))$. The sets $(\mathcal{O}_{\pi(v)}(B(\pi(g^Tv, 2\varepsilon))))_{T>0}$ decrease to a point when $T \to +\infty$, and the measure μ_o^F has no atoms. This proves the lemma.

The Gibbs property 1 implies immediately the following corollary.

Corollary 3. For all $v \in K$

$$\int_{0}^{T} F(g^{t}v) dt \to -\infty \quad when \quad T \to +\infty \quad with \quad g^{T}v \in K.$$

 $^{^1\}mathrm{Keywords}$: Negative curvature, geodesic flow, Gibbs measure, entropy.

²MSC Classification 37A25, 37A35, 37D35, 37D40.

The end of the proof consists in proving that the conclusion of the above corollary, true for all $K \subset T^1 M$ and $v \in K$, implies $\int F dm_F < 0$.

Consider the first return map $\tau^K : T^1M \to \mathbb{R}_+ \cup \{\infty\}$ in K of the time 1-map g^1 of the geodesic flow, let m_F^K be the normalization of the restriction of m_F to K, and τ_N^K the n-th return time in K. Induce on the compact subset $K \subset T^1M$. Define $T(v) = g^{\tau_K(v)}(v)$, and $G(v) = \int_0^{\tau_K(v)} F(g^tv) dt$. We have

$$S_N G(v) = \int_0^{\tau_N(v)} F(g^s v) ds$$
 and $\int_{T^1 M} F \, dm_F = m_F(K) \times \int_K G(v) \, dm_F^K$.

The above corollary implies that when $N \to +\infty$, $S_N G(v) \to -\infty$. The main Theorem follows from the lemma below.

Lemma 4 (Atkinson [Atk76]). Let (X, \mathcal{B}, m, T) be an ergodic system, with m finite probability measure. Let $G \in L^1(X, m)$. If $S_N G(v) \to -\infty$ almost surely, then $\int G dm < 0$.

References

- [Atk76] Giles Atkinson, Recurrence of co-cycles and random walks, J. London Math. Soc. (2) 13 (1976), no. 3, 486–488. MR 419727
- [GST20] Sébastien Gouëzel, Barbara Schapira, and Samuel Tapie, Pressure at infinity and strong positive recurrence in negative curvature, with an appendix by Felipe Riquelme, preprint, 2020.
- [PPS15] Frédéric Paulin, Mark Pollicott, and Barbara Schapira, Equilibrium states in negative curvature, Astérisque (2015), no. 373, viii+281.
- [PS18] Vincent Pit and Barbara Schapira, Finiteness of Gibbs measures on non-compact manifolds with pinched negative curvature, Annales Institut Fourier 68 (2018), no. 2, 457–510.